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New memory technologies are blurring the previously distinctive performance characteristics of adjacent
layers in the memory hierarchy. No longer are such layers orders of magnitude different in request latency
or capacity. Beyond the traditional single-layer view of caching, we now must re-cast the problem as a data
placement challenge: which data should be cached in faster memory if it could instead be served directly from
slower memory?

We present Chopt, an offline algorithm for data placement across multiple tiers of memory with asymmetric
read andwrite costs.We show thatChopt is optimal and can therefore serve as the upper bound of performance
gain for any data placement algorithm. We also demonstrate an approximation of Chopt which makes its
execution time for long traces practical using spatial sampling of requests incurring a small 0.2% average error
on representative workloads at a sampling ratio of 1%. Our evaluation of Chopt on more than 30 production
traces and benchmarks shows that optimal data placement decisions could improve average request latency
by 8.2%-44.8% when compared with the long-established gold standard: Belady and Mattson’s offline, evict-
farthest-in-the-future optimal algorithms. Our results identify substantial improvement opportunities for
future online memory management research.
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1 INTRODUCTION

The goal of the memory hierarchy model for data placement is to carefully trade off properties
of heterogeneous resources to optimize overall system utilization and performance. Historically,
adjacent layers in the memory hierarchy (such as SRAM to DRAM, DRAM to SSD, SSD to disk)
have differed in cost, capacity and performance by several orders of magnitude, readily supporting
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design decisions such as the inclusive caching policy whereby the blocks in a higher layer memory
are also present in a lower layer cache.
As nascent memory technologies muddy the traditional distinction between layers in terms of

storage capacity, latency, power, and costs, the assumptions underlying data placement decisions
need to be revisited. Byte-addressable non-volatile memory (NVM), as one example, is slated to
deliver larger capacity than DRAM at competitive latency, with currently available NVM hardware
(e.g., Intel Optane DC Persistent Memory [24, 33]) incurring 2−−5× the read latency and 4−−10×
the write latency of DRAM (Table 1), far closer than the 2–3 orders of magnitude performance
differences between DRAM and SSD. Similar data placement challenges exist in Non-Uniform
Memory Access (NUMA) architectures, Non-Uniform Cache Access (NUCA) architectures, multi-
tier storage systems, distributed caching systems, and across the CPU-GPU divide to name a few
examples.
We posit that the entrenched cache replacement model for data placement in adjacent layers

of a memory hierarchy fails to express and capitalize on opportunities brought on by these new
technological realities. Using the DRAM-NVM interface as a running example, our paper revisits
the following two assumptions.

A1 (Cache-Bypass) First, the notion that each requested block needs to be brought into and served
from faster memory is unnecessary when the slower memory is directly addressable, allowing
for cache bypassing [47] or cache admission [15] techniques (Figure 1), discussed further below.

A2 (Performance-Asymmetry) Next, read (load) and write (store) operations can have asym-
metric performance characteristics (Table 1), implying that the latency impact of a cache miss
differs between request types. Consequently, the conventional approach of minimizing cache
miss ratio as a proxy for optimizing latency fails to capture the nuance of how higher latency
operations can be balanced against lower latency ones. For example, it may optimize overall
latency to place a write-heavy block in DRAM instead of NVM, at the expense of a read-heavy
block that would otherwise have seen more cache hits.

We will refer to cache policies that support Cache-Bypass and Performance-Asymmetry as data
placement algorithms.
We present an offline data placement algorithm across cache, memory, and storage hierarchies

that optimizes latency while supporting A1 and A2. Many recent works have considered these
assumptions in isolation [3, 22–24, 36, 38, 41, 47]. When assumptions change and models are revised,
the yardstick for what constitutes “good” performance within the model need to be adjusted as well,
which underscores the need for offline optimal algorithms. Our approach follows the template of
recent and ongoing work that revisits canonical memory model assumptions, such as by supporting
variable sized items [14], accounting for cache write-back policies [8], and enabling caches to
dynamically adjust their capacity [40].

Under the hood, our algorithm,Chopt (forCHoice-awareOPT), casts the demand-basedmemory
data placement problem within a network flow framework, then uses a Minimum-Cost Maximum-
Flow (MCMF) algorithm to determine whether each requested memory block should be accepted
into faster memory. To help accelerate trace simulation for larger workloads, we exploit sampling
and show both empirically and theoretically that the scaled-up latency performance of Chopt
on a spatial sample of a trace gives a faithful approximation of the performance on the original
workload. Our analysis of spatial sampling of cache streams provides a rigorous footing for recent
empirical results in the area [9, 58, 59].
Simulation results of Chopt on dozens of traces from diverse systems, including program

memory accesses in the PARSEC benchmark suite (for the DRAM-NVM interface), block accesses
from virtual machines (VMs) on hypervisors used in production (for multi-tier storage systems),
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NVM Block TLC

DRAM NVM

Devices Flash

Load Latency 70ns 180-340ns 10`s 100`s
Store Latency 70ns 300-1000ns 10`s 14`s
Max. Load
Bandwidth 75GB/s 8.3GB/s 2.2GB/s 3.3GB/s

Max. Store
Bandwidth 75GB/s 3.0GB/s 2.1GB/s 2.8GB/s

Table 1. Memory Hierarchy Characteristics of DDR4 DRAM, NVM (Intel Optane DC Persistent Memory), NVMe

block device (Intel Optane SSD DC), and TLC flash device [5, 24, 33]

and web cache accesses from a major content distribution network (CDN) suggest that average
latency reduction of 8.2%, 44.8%, and 25.4%, respectively, are possible over Belady’s MIN cache
replacement policy (Table 4). By providing the best possible performance as a yardstick, offline
trace simulation of Chopt can afford algorithm designers and operators greater visibility into
defining and evaluating online data placement policies for their workloads.

Our key contributions can be summarized as follows.
• We frame the challenges of data placement in modern memory hierarchies in a generalized
paging model outside of traditional assumptions.

• We design Chopt, an offline data placement algorithm for providing optimal placement decisions
as the upper bound of performance gain for any data placement algorithm.

• We apply spatial sampling to enable Chopt to support long traces efficiently.
• We show analytically that spatial sampling gives a high-fidelity approximation.
• We present trace-driven simulation results in context of a two-layer memory hierarchy for Chopt
relative to Belady’s MIN. Our results show an opportunity to improve latency performance
ranging between 8.2% and 44.8% on average versus the MIN clairvoyant algorithm. We also show
how our revisited assumptions A1 and A2 contribute to these improvements.

• We evaluate the performance of applying spatial sampling on Chopt, showing an error of only
0.2% in average latency at 1% sampling ratio on the PARSEC benchmarks [16].

2 MODERN MEMORY HIERARCHIES

The memory hierarchy has been a guiding model since the beginning of computing, providing
system designers a framework for managing complexity and reasoning about trade-offs inherent in
combining very different memory hardware into functioning systems. Consequently, most systems
until recently have required data in lower tiers to be addressed only indirectly via higher tiers
(typically operating as inclusive or exclusive caches). Such abstraction was not only convenient
because subsequent tiers of memory were orders of magnitude different in latencies and capacities,
but it also made the CPU design process simpler and more optimized.
We suspect that the success of the strict memory hierarchy in CPU caches may also have

decelerated algorithm innovation and analysis into the more general data placement problem.
For example, flash-based solid-state disks (SSDs) and hard disk drives (HDDs) have been equally
addressable from an operating system (OS) point of view since at least the mid-2000s, yet most
optimization research has treated the flash layer as a cache tier.

Addressability becomes even more important as new memory devices simultaneously diversify
the characteristics of memory components (e.g., data volatility and bandwidth) and decrease the
performance differences (e.g., less pronounced latency or capacity difference) between layers. We
begin by surveying three domains where such developments are playing out.
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Fig. 1. Supported memory modes for DRAM and NVM. If memory access is virtualized by the memory

controller, DRAM acts as an architecturally invisible “cache” (a,b). However, unlike a traditional cache, data may

also be loaded directly into the last-level cache (LLC) from NVM. The memory controller employs algorithms to

dynamically manage data placement and therefore optimize hit latencies. On the other hand, if DRAM and NVM

are separately accessible by the software layers (c), the OS or the application must decide data placement. (a) A

requested block is found and returned from DRAM. (b) The block is not found in DRAM so the memory controller

redirects the request to NVM. (c) Both DRAM and NVM are visible to the OS and the application that together

dynamically control which blocks reside in DRAM versus NVM. (a) and (b) represent “Memory Mode” whereas (c)

represents the “App-Direct Mode” supported by Intel’s Optane DC processor [1].

Non-Volatile Memory. Intel recently released the Optane DC Persistent Memory [33] whose
load and store latency are within the same order of magnitude as regular DRAM. Other NVM
technologies are under development, including Spin-Transfer-Torque RAM (STT-RAM) and 3D-
XPoint, and are expected to reach similar performance. Table 1 shows a performance comparison of
DRAM, NVM, and NVMe memories. Intel Xeon™ scalable processors currently support DRAM and
NVM together in their main memory systems [2, 6], with NVM poised to sit between DRAM and
SSDs as an additional layer in the memory architecture. These NVMmemories support direct access
to data and optionally direct addressability from software. We illustrate the availables modes in
Figure 1, including the case where NVM is accessed without involving the DRAM cache. As another
layer, Intel Optane NVMe block devices have performance closer to SSDs and can be interposed
between main memory and slower storage, with commercial deployment already underway [24].

Multi-Core Processors. The arrangement of the memory hierarchy among caches and DRAM
on modern multi-core processors is also changing. Non-uniform memory access (NUMA) technolo-
gies allow direct addressability to data in DRAM on remote CPU sockets through an interconnect,
forcing the OS to consider data placement among local and remote memories for maximizing
overall space and bandwidth utilization at a lower latency. Similarly, last-level caches (LLCs) in
a single CPU socket may be arranged in a non-uniform cache access (NUCA) architecture with
different latency to different CPU cores.

Distributed Caches. Cache servers have been pivotal in accelerating the web and making ser-
vices responsive, both within data centers through large-scale look-aside caches like memcached [27],
and on the wider Internet through large-scale content delivery networks (CDN) operating on geo-
graphically distributed cache servers [32]. Internally, CDNs must solve challenges of data placement
among nodes, cache pollution from “one-hit wonders”, routing, and replication, all to minimize the
latency experienced by end-users [55]. Each server in a distributed cache is internally addressable,
allowing for Cache-Bypass, and gets and puts of objects may have asymmetric performance [15].
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3 OPTIMAL DATA PLACEMENT

Having seen that data placement decisions across layers arise in multiple domains, we next consider
how assumptionsA1 andA2 can be incorporated into a generalized data placement model. We then
define an offline optimal algorithm for the model, allowing algorithm designers to contextualize
the level of effort that should be invested in developing online heuristics for the problem, and to
evaluate the fruits of such labor.

3.1 Generalized Model and Objective

Let us consider two layers of directly addressable memory (L1 and L2). We assume L1 has a capacity
of 𝑁 blocks (or items), and that all data can be served from L2. We discuss extensions to more
layers in Section 3.5.

We define a workload as a sequence ®𝑥 = (𝑥𝑡 )𝑇𝑡=1 of 𝑇 unit-size block accesses where 𝑥𝑡 ∈ 𝐼 for all
𝑡 and 𝐼 denotes the set of all blocks that can be requested. A data placement algorithm processes
the sequence ®𝑥 in order, and for each request 𝑥𝑡 that is not already in fast memory (L1) makes an
online decision whether to:
(1) bring 𝑥𝑡 into L1; note this may potentially evict another block on demand if L1 is full, or
(2) serve 𝑥𝑡 directly from L2 without loading into L1.

Note that (2) represents a cache-bypass (A1) decision.
Whereas cache performance is traditionally measured simply through miss ratio (or hit ratio) as a

proxy for the average access latency, we wish to incorporate the performance asymmetry between
read and write operations (A2) directly into the performance metric. These measurements can
differ, e.g., multiple low penalty load misses may be desirable over a costly write miss. Accordingly,
we will directly measure and optimize average access latency throughout this paper. Specifically,
we let ®𝑤 = (𝑤𝑡 )𝑇𝑡=1 with𝑤𝑡 ∈ W denote the latency penalty for each request, whereW = {𝑊ℓ ,𝑊𝑠 }
accounts formarginal latency penalty of load (read) and store (write) operations being served by L2
rather than L1. We assume without loss of generality that the latency of load and store operations
in L1 are identically 1. Therefore, the access latency for request 𝑥𝑡 is𝑊ℓ + 1 (load operation) or
𝑊𝑠 + 1 (store operation) if it was served from L2, and 1 otherwise.

In keeping with the two-layer DRAM-NVM memory hierarchy as a running example, let us refer
to DRAM as L1 and NVM as L2. We set the latency of DRAM load and store operations as 1 and
NVM load and store as 2 and 5 based on the hardware characteristics displayed in Table 1.

3.2 Why Investigate Offline Performance?

Identifying the optimal cache replacement strategies, Belady’s MIN and Mattson’s OPT (evict-
farthest-in-the-future) [11, 44], was a critical junction in the creation of memory paging systems for
two chief reasons. First, it allowed researchers to study the optimal decision making and incorporate
ideas into the online heuristics. Second, and more importantly, it provided both a benchmark to
beat and a gauge for success. For example, if evicting least-recently-used (LRU) pages were to yield
a seemingly low 45% hit ratio on a trace, the result becomes relevant only when we learn that the
clairvoyant OPT algorithm would obtain a hit ratio of, say, 48%. As such, evaluating offline optimal
performance is the crucial yardstick in the recent wave of adopting machine learning algorithms to
make caching decisions because these algorithms are specifically trained to imitate the optimal
policy. Berger [13], for example, applied supervised learning to practically map object features
to optimal decisions learned from offline analysis. Shi et al. [56] proposed to help design online
hardware predictors with deep learning by training offline models of OPT decisions.
In 2020, we find that while OPT remains the touchstone for cache replacement algorithm

performance, cracks are also forming. Recent papers have pointed out that as assumptions shift,
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such as when objects have different sizes [14, 15], when the cache size is dynamic [40], or whenwrite
endurance of the memory needs to be considered [19], the canonical cache model is inadequate,
and with it, OPT. We thus ask: Under the presented generalized data placement model, what latency

performance can we hope for, even under offline conditions?

3.3 Designing an Offline Optimal Algorithm

We now introduce Chopt (CHoice-aware OPTimal), an optimal offline algorithm for the data
placement under the generalized model defined above. The key idea behind Chopt is to represent
memory hierarchy placement decisions as network flows, translating the optimal placement deci-
sions into an instance of a Minimum-Cost Maximum-Flow (MCMF) problem. A similar approach
was recently deployed by Berger et al. [14] in work concurrent with ours to evaluate the limits of
optimal replacement under variable sized cache items. A chief difference is that the assumption of
unit-size pages in our model sidesteps the knapsack/bin-packing style complexity and hardness that
arises from arbitrary item sizes. Our preliminary results suggest our approaches can be combined
but defer a full study to future work.
In Chopt, every access in the trace ®𝑥 is associated with an explicit node. Arcs connect both

adjacent requests to simulate time (a timeline link), and requests for the same block. Positive flow
on the timeline links implies requests should be served from L2 (NVM), whereas flow on the latter
arcs implies that the block should be retained in L1 (DRAM) during the corresponding time interval.
Chopt thus views each flow as the representation of a single memory slot in L1, tracking its
occupancy sequence along with the workload, including swapping blocks in and out. Costs and
capacities are associated to arcs to represent latency savings of serving data from L1 rather than
L2, to ensure that each item is cached by no more than one L1 slot, and that the maximum number
of concurrent flows is 𝑁 . Chopt assumes that all requests are served by the NVM layer by default,
and then calculates the “savings” from that baseline, where the maximum savings represents the
minimum overall cost for handling the trace. Generally, replacing a block between the layers incurs
a positive cost that we will seek to minimize, whereas accessing a block in the DRAM layer leads
to a negative cost—a reward. The optimal algorithm is now reduced to a search for the MCMF flow
solution.

3.4 The Anatomy of Chopt

We next provide a formal definition of the Chopt algorithm for an L1 cache of size 𝑁 . We define a
cache schedule of size 𝑁 as a sequence of sets 𝐶0, . . . ,𝐶𝑇 where 𝐶𝑖 ⊆ 𝐼 for all 0 ≤ 𝑖 ≤ 𝑇 with 𝐶0 = ∅
and such that |𝐶𝑡 | ≤ 𝑁 , and where at most one block gets cached or evicted in each round, that
is |𝐶𝑡Δ𝐶𝑡+1 | ≤ 1 for all 𝑡 . Here, 𝐴Δ𝐵 denotes the symmetric set difference (𝐴 − 𝐵) ∪ (𝐵 −𝐴). We
highlight that the schedule is not forced to bring the block currently being accessed into cache
memory.

Graph Construction.We define a directed network𝐺 with 2𝑇 + 2 nodes and up to 4𝑇 + 2 edges.
For each time point 𝑡 between 1 and𝑇 , we add two nodes: one main lane node 𝑥𝑡 for the time point,
and another high lane ℎ̂𝑡 for the requested item 𝑖 = 𝑥𝑡 .

The directed edges are drawn as follows. First, we add arcs between simultaneous main lane and
high lane nodes, specifically 𝑥𝑡 and ℎ̂𝑡 for any 𝑡 , which denote that the item could be swapped in or
out. The capacity for both arcs is 1, and the cost is 𝑍 . These are caching links (pointing up to the
high lane) and eviction links (pointing down to the main lane) for the item 𝑖 = 𝑥𝑡 in question.
Second, for adjacent time points in the main lane, we add a forward arc (𝑥𝑡 , 𝑥𝑡+1) with infinite

capacity and zero cost. The zero cost here indicates that storing data in L2, effectively a miss, offered
no savings over L1. We call these timeline links.
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Fig. 2. Example of a network flow constructed by Chopt, on a trace covering 14 requests for three unique items.

Nodes and colored edges are described in Section 3.4.

Third, we add arcs for neighboring requests for the same item in the high lane, specifically
(ℎ̂𝑡 , ℎ̂𝑡 ′) where 𝑡 ′ is the next time after 𝑡 when item 𝑖 = 𝑥𝑡 = 𝑥𝑡 ′ is requested. These arcs each have
a capacity of 1, and cost of −𝑤𝑡 for𝑤𝑡 ∈ W. Positive flow across this edge means a cache hit in L1
and so the latency of a miss was saved. We call this edge a retention link for item 𝑖 .

At last, we add a final arc from a source node 𝑠 ∈ 𝑉 to 𝑥1 with capacity of cache size 𝑁 and cost
of 0, and a zero-cost and infinite capacity arc from 𝑥𝑇 to sink node 𝑡 ∈ 𝑉 . The source node arc acts
as a choke link to limit the cache size.

Optimization. We now run a MCMF algorithm on 𝐺 [30]. Because each arc has an integer
capacity, the ensuing optimal flow is integral. The resulting flow is interpreted with respect to a
cache schedule as follows. Positive flow across a cache link at time 𝑡 for item 𝑖 indicates whether or
not item 𝑖 should be brought into L1 (flow of 1) or stay in L2 (flow of 0). Similarly, positive flow on
an eviction link states that item 𝑖 is no longer needed in cache at that time 𝑡 . If there is any positive
flow on a retention link (ℎ̂𝑡 , ℎ̂𝑡 ′) for item 𝑖 , which must equal 1, then item 𝑖 = 𝑥𝑡 = 𝑥𝑡 ′ remains in
cache between 𝑡 and 𝑡 ′. In this way, given a fixed cache size 𝑁 , the minimum cost maximum flow
implies a schedule for the cache: which items are swapped in and out at what time.

Illustrative Example. Figure 2 shows an example of the graph constructed by Chopt for a
trace of 14 requests to blocks 𝑎, 𝑏 and 𝑐 . Each request is represented by two nodes: an upper one
corresponding to the DRAM (high lane) and a lower one corresponding to NVM (main lane). We
also show the source node 𝑠 and sink node 𝑡 . The nodes are connected by multiple types of edges
which we differentiate by color. We explain each type of colored edges as below and reintroduce
their cost and capacity in the example.

• Green edges represent the caching links and eviction links, denoting replacement operations.
The cost of replacement in each layer should be equal to the latency of a store on that layer, so a
green edge going upper or lower in the figure has cost of 1 and 5. Since at most one block can be
replaced on a request, the green edge capacity is 1.

• Black edges represent the timeline links, and act as a baseline – all blocks are assumed to be in
NVM unless specifically moved to DRAM. Because the objective function calculates the maximum
latency improvement over exclusively using NVM, the capacity of the black edges is +∞ and
their cost is 0.

• Red, Blue, and Orange edges represent retention links, which imply DRAM accesses on the
request. The different colors represent accesses for different blocks. From each block’s view, flow
across the edge means that the block is cached in DRAM at the time of the request. Accessing the
block in DRAM can save cost compared with NVM, so the cost for those edges is𝑊ℓ −1 = 2−1 = 1
if the request is a read, and𝑊𝑠 − 1 = 5 − 1 = 4 if the request is a write. Only one cell and thus
flow should hold an item, and thus the capacity of those colored edges is set to 1.
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Fig. 3. Extending Chopt to more layers. First, set choke links with capacity 𝑐1, apply the Chopt algorithm

on (a) to solve for data placement, reconstruct the graph as per (b), modify the choke link capacity, apply Chopt

algorithm again, and finally combine the placement solutions from (a) and (b).

• Pink edges represent the choke links. The capacity of a pink edge from the source node 𝑠 is the
DRAM size 𝑁 , which in turn controls the maximum number of flows. The cost of a pink edge is
0.
Correctness. By construction, the MCMF over the graph implicitly considers all possible data

placement options for the given trace. The proof of correctness for Chopt is mostly routine and
established by two lemmas. As a special case, they establish the optimality of the cache-bypass
policy OPT𝑏 that was investigated without proof by Michaud [46]. We provide proofs of key
assertions in Appendix B.

3.5 Extending Chopt to Multiple Layers

Chopt is a general model that can serve as a building block when considering multiple memory
or storage layers. We sketch how Chopt can support more layers in deeper hierarchies, keeping
average access latency as our main metric. We assume that lower capacity layers are implicitly more
valuable in terms of performance.

Suppose the memory hierarchy consists of three addressable layers L1, L2, L3, as shown in
Figure 3(a). We expand the definition of nodes so that at each time point, we still have onemain lane

node but with two high lane nodes – the core modification of the graph structure. Assume without
loss of generality that 𝑐1 < 𝑐2 < 𝑐3 where 𝑐𝑖 represents the capacity of 𝐿𝑖 . We also extend the
definition of links: caching links and eviction links should connect each pair of main lane and high

lane nodes at any time point. Timeline links remain unmodified since we only have one baseline.
Retention links, arise only in the high lane in a two-layer memory hierarchy, but since we have
one more high lane, retention links should be constructed within each high lane. Note that we
only added links for the additional high lane, and that node and arc roles have otherwise not been
changed. The capacity and cost are unchanged, except caching links and eviction links. Cost𝑤𝑡 on
those links represents the writing cost on the lane of the link sink, so between every two lanes,
either between a high lane and a main lane or between two high lanes, the cost of those links can
be reset correspondingly.

The main challenge now is to consider the choke links, which represents the high lane capacity
in a two-layer hierarchy. Considering that in memory hierarchies, the first priority is to maximize
the utilization of the most valuable layer — L1 in our example — and the next is L2. This does not
mean that the capacity of these layers is filled. For the multiple layer hierarchy with multiple high
lanes, we respect the priority and maximize utilization for them layer by layer. Figure 3 shows the
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process (a) and (b) with an example. First, Chopt sets the choke links with capacity as 𝑐1, and then
runs Chopt to determine a placement solution. Chopt terminates when the capacity of choke links
is reached, or no more negative cost cycles can be found in the residual graph (in the Figure, there
is surplus capacity on the choke links). In the latter case, the Chopt placement solution is already
optimal since the utilization of each lane is maximized. In the former, however, the utilization of L1
is maximized but that of L2 may not be. In this case, we should remove all high lane nodes in L1 as
well as all related caching, eviction, and retention links from the graph. For all remaining links, we
continue searching and the cost and capacity are unaffected. Since the target changes to maximize
the residual utilization of L2, the capacity for choke links should be reset as the difference between
𝑐2 and the capacity already used by step (a). We refer to this new graph shown in Figure 3(b) as the
degraded graph. We can now run Chopt again on the degraded graph to identify more placement
solutions. Note that the new solutions are compatible with the L1 placement decisions because
the high lane nodes in L1 were already removed. In this manner, Chopt determines placement
solutions for three-layer memory hierarchies, and can be expanded to support more layers.

4 ANALYZING LONG TRACES BY SAMPLING

Chopt provides an optimal offline latency estimate for a trace of length 𝑇 in 𝑂
(
𝑇 2 log2𝑇

)
time,

with different worst-case bounds depending on what MCMF algorithm is used for optimization [30].
Yet analyzing offline optimal placement is primarily of interest for large-scale real-world workloads,
often comprising at least 107 − 109 requests [14, 40]. The running time of Chopt for such long
traces can be prohibitive.
To make Chopt practical to use, we apply spatial sampling on the traces — a sampling over

blocks rather than requests — to reduce the scale of the simulation. Spatial sampling has been used
successfully in recent cache replacement work [9, 58, 59] and was shown empirically to accurately
calculate miss ratios. In addition to using spatial sampling on Chopt, we investigate the analytic
limits of the approximation provided via sampling, highlighted in Corollary 4.9.

Stack algorithms. Expanding on our earlier notation, we let𝐶𝑛
0 , . . . ,𝐶

𝑛
𝑇
denote the cache sched-

ule of size 𝑛 for a cache policy P. Following the fertile line of work started by Mattson et al. [44],
we define stack algorithms as follows.

Definition 4.1. Cache policy P is a stack algorithm if its cache schedule adheres to the inclusion
property, specifically that 𝐶𝑛

𝑡 ⊆ 𝐶𝑛+1
𝑡 for all 𝑡 ∈ [𝑇 ] and 𝑛 ∈ N.

Here, we used the bracket shorthand for integer ranges, [𝑁 ] := {1, 2, . . . , 𝑁 }. Common examples
of stack algorithms include LRU, LFU, and OPT [44].

Stack algorithms induce an ordering over the elements in cache. Specifically, we say that 𝑖 ≺𝑡 𝑖
′

for (𝑖, 𝑖 ′) ∈ I2 at time 𝑡 if for some 𝑛 ∈ N we have 𝑖 ∈ 𝐶𝑛
𝑡 and 𝑖 ′ ∉ 𝐶𝑛

𝑡 . The relation ≺𝑡 defines a
partial order over I.
Definition 4.2. P is stable if the sequence (≺𝑡 )𝑡 ∈[𝑇 ] has the property that for every 𝑡 ∈ [𝑇 − 1]

and item pairs 𝑖, 𝑖 ′ ∈ I − {𝑥𝑡 } with 𝑖 ≺𝑡 𝑖
′ we also have 𝑖 ≺𝑡+1 𝑖 ′.

The omission of 𝑥𝑡 implies that the item requested at time 𝑡 is the only item whose relative order
may change at time 𝑡 . In the case of LRU, for instance, the requested item 𝑥𝑡 is moved to the front
(most recently used) location of the stack while leaving all others unperturbed.

Definition 4.3. Define 𝑟𝑡 as the stack distance of element 𝑥𝑡 at time 𝑡 , s.t. 𝑟𝑡 = |{𝑖 ∈ I : 𝑖 ≺𝑡 𝑥𝑡 }| .
The following observations are immediate.

Remark 1. The cache policy P of size 𝑠 on trace ®𝑥 has a cache miss at time 𝑡 for item 𝑥𝑡 if and only

if 𝑟𝑡 ≥ 𝑠 .
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Remark 2. LRU, LFU, OPT and Chopt are stable stack algorithms.

Generalized Miss-Ratio Curves.We measure the impact of sampling by studying how latency
changes with cache size through a slight generalization of the well-known miss-ratio curves [59].
Let 1[𝐴] ∈ {0, 1} denote the indicator function for predicate 𝐴, such that 1[𝐴] = 1 iff 𝐴 is true,
with the standard generalization to random variable 𝐴 in a probability space.

Definition 4.4. A weighted miss-ratio curve (WMRC)𝑚 : N→ N over ®𝑥 on policy P is a function
that aggregates the weighted impact (latency) of cache misses for a cache of size 𝑠 ∈ N under policy
P and workload ®𝑥 , formally

𝑚(𝑠) =
∑
𝑡 ∈[𝑇 ]

𝑤𝑡1[𝑟𝑡 ≥ 𝑠],

where𝑤𝑡 ∈ W is the marginal increase in latency for missing request 𝑥𝑡 .

The request weights ®𝑤 will serve to differentiate the latency impact𝑊ℓ of reads (loads) and
writes𝑊𝑠 (stores) into lower level cache, in which caseW = {𝑊ℓ − 1,𝑊𝑠 − 1}.

Sampling WMRCs. Sampling has been shown empirically to provide fast and accurate approx-
imations for miss ratio curves [58]; our analysis provides a theoretical footing for these results. We
will focus on spatial sampling of the trace ®𝑥 , where each item — not request — is independently
included in the trace with probability 𝛼 ∈ [0, 1], where 𝛼 can be referred to as the sampling ratio.

Let𝑌𝑡 ∈ {0, 1} be an indicator random variable denoting the event that cache item 𝑥𝑡 was sampled,
in which case 𝑌𝑡 = 1. By assumption, P[𝑌𝑡 = 1] = 𝛼 . Note that the 𝑌𝑡 variables are themselves not
pairwise independent since they could refer to the same cache elements. Let I𝑆 ⊆ I denote the set
of spatially sampled items.

We now adapt our definitions to the sampled trace.

Definition 4.5. The sampled stack distance 𝑟𝑡 is a randomvariable, defined as 𝑟𝑡 = |{𝑖 ∈ I𝑆 : 𝑖 ≺𝑡 𝑥𝑡 }| .

Lemma 4.6. Either 𝑟𝑡 = 𝑟𝑡 = ∞, or the sampled stack distance 𝑟𝑡 ≈ Binom(𝑟𝑡 , 𝛼). Also, 𝑟𝑡 is

independent of 𝑌𝑡 .

Proof. For the first part, assume 𝑟𝑡 < ∞ and consider the subsequence 𝑥 𝑗1 ≺𝑡 𝑥 𝑗2 ≺𝑡 · · · ≺𝑡

𝑥 𝑗𝑟𝑡 = 𝑥𝑡 . Then
𝑟𝑡 =

∑
𝑠∈[𝑟𝑡−1]

1[𝑌𝑗𝑠 = 1]

which is the sum of 𝑟𝑡 independent identically distributed Bernoulli variables with probability 𝛼 ,
thus 𝑟𝑡 ≈ Binom(𝑟𝑡 , 𝛼). For the second part, note that the sum for 𝑟𝑡 specifically excludes 𝑌𝑡 . □

Definition 4.7. The sampled miss ratio curve �̂� : [𝑁 ] → N over ®𝑥 and weights ®𝑤 is defined as the
aggregate of the weighted impact from cache misses for cache policy P of size 𝑠 ∈ N that observes
only those requests 𝑥𝑡 in ®𝑥 with 𝑌𝑡 = 1. Formally,

�̂�(𝑠) =
∑
𝑡 ∈[𝑇 ]

𝑤𝑡1[𝑟𝑡 ≥ 𝑠]1[𝑌𝑡 = 1] .

Our main result is the following.

Theorem 4.8. (Spatial sampling theorem). For weights W = {𝑎, 𝑏} with 0 ≤ 𝑎 ≤ 𝑏 and weight

skew b = |{𝑡 ∈ [𝑇 ] : 𝑤𝑡 = 𝑎}|/𝑇 , we have

|E [�̂�(𝛼𝑠)] − 𝛼𝑚(𝑠) | ≤ 𝑇𝛼 (b𝑎 + (1 − b)𝑏) exp
(
−𝛼𝑠

8

)
.
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Corollary 4.9. When all weights are identically 1, the spatial sampling theorem states that

�̂�(𝛼𝑠) ≈ 𝛼𝑚(𝑠) on average for any 𝑠 with an error of at most 𝑇𝑒−
𝛼𝑠
8 .

Summary. To avoid running Chopt on a long trace, which would take prohibitively long, Theo-
rem 4.8 establishes that Chopt can be approximated for a cache of size 𝑠 through the following
procedure.
(1) Spatially sample 𝛼-fraction of the blocks from the full trace 𝑇 , producing shorter sub-trace 𝑆 .
(2) Run Chopt on 𝑆 with a cache of size 𝛼𝑠 to obtain average access latency of ℓ .
(3) Estimate the average access latency of the original trace 𝑇 for cache size 𝑠 as ℓ

𝛼
.

According to the corollary, the absolute error for this approximation is no more than exp(−𝛼𝑠/8)
in expectation, meaning that the approximation is exponentially more accurate in larger cache
sizes and higher sampling ratios. The corollary assumes read and write latency to be identical,
which establishes the theorem for the special case of the conventional miss ratio curves from the
literature. When the weights differ, there is an additional b𝑎 + (1 − b)𝑏 factor on the error bound.
We evaluate the empirical tightness of the bound below.

5 EVALUATION

We evaluate Chopt through experiments on multiple types of real-world traces that focus on the
following questions.
• Can Chopt draw the optimal placement boundary for different types of workloads? How much
improvement can Chopt demonstrate compared to other state-of-the-art caching algorithms or
placement policies?

• How do the two revisited assumptions affect data placement algorithms in memory hierarchy
scenarios?

• Does spatial sampling provide useful approximations of real workloads? How accurate is it?

5.1 Traces

We evaluate Chopt on a variety of real-world traces on different workload categories, including
memory traces, storage block traces, and content delivery network (CDN ) traces. Detailed workload
characteristics are described in Appendix A. Throughout this section, we use original CDN traces
as describe in the appendix. However, given their sheer size, we reduce the Memory and Storage

traces in two different ways. In Section 5.3, we sample from the original traces to reduce runtime
as described in Table 7. In Section 5.4, however, our experimental runtime would be astronomically
high even with sampling so we choose to trim the traces before sampling.

5.2 Experimental setup

Implementation. We implemented an offline simulator for Chopt in C++, where we apply the
Bellman-Ford algorithm for solving the MCMF problem [61]. We use an Intel Xeon CPU E5-2670
v3 2.30GHz system for simulating our experiments. The running times for calculating optimal data
placements by Chopt on our workload traces are shown in Table 7.

Caching Policies. We implemented other prominent caching algorithms for comparing data
placement results with Chopt. Belady’s MIN (named as Belady in the results) policy is the
authoritative offline algorithm for optimal cache placement, evicting the item that will be used
farthest in the future—if at all. Since the original Belady does not assume A1, we modify it to
allow admission control, called Belady-AD. Specifically, Belady-AD considers the next access for
the currently requested object, but bypasses any object whose next access is farther in the future
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Chopt Belady Belady-AD LRU W-TinyLFU
A1

√ × √ × √

A2
√ × × × ×

Online × × × √ √

Table 2. Modeling assumptions for different algorithms.

than all other objects currently resident in the cache. We also implemented the Least Recently
Used (LRU) algorithm as the most commonly used caching algorithm, and W-TinyLFU [22] as the
state-of-the-art for a cache admission control policy. W-TinyLFU relies on request histories for
making cache replacement decisions. The key idea is to maintain a freshness mechanism through
lightweight counters. Table 2 shows how each of these algorithms meet our assumptions A1 and
A2. Since none of those original policies consider performance asymmetry, we evaluate A2 by
varying simulation configurations as detailed below.

Memory Model and Configuration. We apply a two-tier DRAM-NVM memory hierarchy in
our experiments for evaluating Chopt’s performance. We use normalized performance configura-
tions based on the real measurements in Table 1, where DRAM load/store latency is normalized
to 1, and NVM load/store latency as either 2 and 5. Since no comparison algorithms or policies
assume A2, we evaluate Chopt on another configuration where the normalized DRAM latency
remains the same while both NVM load/store latencies are set to 5. For each trace, we vary the
cache size from tiny to large enough to cover all unique requests in the trace instead of configuring
arbitrary cache sizes for each workload category. This allows all performance patterns to be shown
in our results while avoiding occluding unexpected results from arbitrary cache configurations.

Metrics. The key metric for our evaluation is based on access latency, since data placement
performance is more expressive than the proxy of hit ratio. We use Normalized Average Access
Latency (NAAL) to capture the average latency on placement for each access. For apples-to-apples
comparison of Chopt placement relative to other algorithms using workloads from different
categories, we use the Relative Latency Improvement (RLI ) to measure the percentage of Chopt
latency performance over any other algorithm. The NAAL of Chopt, denoted as 𝑁𝐴𝐴𝐿0, and
that of another algorithm, say 𝑁𝐴𝐴𝐿1, is expressed as RLI = 1 − 𝑁𝐴𝐴𝐿0

𝑁𝐴𝐴𝐿1
. When presenting the RLI

results, we vary the cache sizes as a ratio of unique requests to consider the diversity of different
workload categories. For the Memory category, we choose 0.1%, 0.5%, and 1% of unique requests as
the cache size for the results. In contrast, for Storage and CDN categories, we choose 1%, 2%, and
5% respectively. Finally, we also calculate hit ratios as a legacy comparison, as it also helps measure
wear-out of memory layers.

5.3 Chopt Simulation Results

Chopt Performance. Among all workloads in the experiments, Chopt provides better NAAL
than any other algorithm at any cache size. Figure 4 presents several results of NAAL on randomly
chosen workloads, three from each workload category, under our normal configuration with A2.
In those examples, Chopt always provides NAAL less than 2 except at small cache sizes, which
indicates good performance with respect of latency. Figure 5 presents results of RLI with workload
specific chosen cache sizes as discussed above, and with the same configuration. This includes all
workloads from Memory and CDN categories, and 10 randomly chosen workloads from Storage

category. Trace names shown in Figure 4 also represent the same trace as in Figure 5. Table 4
presents aggregated results of RLI on all workload categories and over all other algorithms, with all
varied cache sizes and under configurations with or without A2. From the results, Chopt provides
average RLI at 8.2% over Belady on Memory workloads, and 44.8% and 25.4%, respectively, on
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Fig. 4. Normalized Average Access Latency (NAAL) results on three randomly chosen workloads from each

workload category. Cache size is varied from very small to large enough to fit all unique items in the trace.

Belady W-Tiny
A2 Chopt Belady -AD LRU LFU√

77.78
Memory × 85.45 87.58 87.63 81.58 82.67

√
32.55

Storage × 31.42 35.39 35.42 27.11 27.15
√

65.78
CDN × 71.76 75.24 75.34 62.13 62.56

Table 3. Average hit ratio (%) under different A2 asymmetry assumptions, specifically that NVM stores have

respectively twice and 5× the latency of reads. Cache sizes are 1% of unique items in each workload.

Storage and CDN workloads. Among all algorithms, Chopt provides RLI of 6.6%−53.1% on average,
and even up to 74.0% over Belady on storage workloads. This exposes significant room for further
improvements on data placement policies over the memory hierarchy.

Cache Bypass. As shown in Table 2, Chopt, Belady-AD, and W-TinyLFU considers A1 while
Belady and LRU do not. From Figure 4, algorithms consideringA1 often perform better. In Storage2,
for example, algorithms with A1 yield NAAL between 2.5 − 3.5, while others have 5 − 6. Even
if we define RLI for comparing improvements for Chopt over other algorithms, RLI can also
contrast these algorithms on the same workload category, where a lower RLI by Chopt means
superior latency performance. Figure 5 also suggests that algorithms considering A1 provide lower
latency in several workloads, especially in the Storage and CDN categories. In Table 4, the RLI
over Belady-AD and W-TinyLFU are 22.3% and 17.7% for the Storage workloads, whereas the
improvements are 44.8% and 53.1% over Belady and LRU. A simpler explanation for the importance
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Fig. 5. Relative Latency Improvement (RLI) results on single workloads over all workload categories (each in a

column) algorithms (each in a row). Showing all Memory and CDN workloads, and 10 of 106 randomly chosen

Storage workloads. Cache size is varied as 0.1%, 0.5%, and 1% of unique requests for Memory workloads, while

1%, 2%, and 5% for Storage and CDN workloads.

Parameter Belady Belady-AD LRU W-TinyLFU
Workload

NVM𝑠 NVMℓ Avg % Max % Avg % Max % Avg % Max % Avg % Max %
2 8.2 63.8 6.6 47.1 14.5 70.9 12.3 47.5Memory 5 5 7.2 61.5 5.5 43.7 13.7 69.0 11.3 42.9
2 44.8 74.0 22.3 71.0 53.1 80.9 17.7 49.6Storage 5 5 45.0 73.9 19.2 71.2 53.0 80.9 17.9 49.1
2 25.4 66.1 17.4 47.0 33.5 75.5 13.3 55.4CDN 5 5 23.1 64.6 16.2 43.7 39.9 74.4 11.1 52.6

Table 4. Relative Latency Improvement (RLI) results aggregated on all workloads and over all algorithms. Average

result among all varied cache sizes. NVM load latency NVMℓ is 5. Considering with and without A2 assumption

through configuring NVM store latency NVM𝑠 as 2 and 5 respectively.

of A1 lies in comparing the controlled results between Belady and Belady-AD, where A1 is
the only variable. From Figure 4 and Figure 5, all workloads show superior NAAL and RLI on
Belady-AD over Belady. From Table 4, Belady-AD yields better RLI over Belady, with minimal
improvements on the Memory traces but significant savings in the Storage and CDN categories.
Performance Asymmetry. Table 4 presents experimental results for different A2 assumptions,

where 𝑁𝑉𝑀𝑠 = 5 means same NVM load/store latency as when disregarding A2. The results show
that Chopt still provides RLI over other algorithms even without considering A2. This indicates
that Chopt provides optimal data placement even without A2, while considering performance
asymmetry is necessary for accurately making data placement decisions.
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Hit Ratio and Endurance. Table 3 presents hit ratio results for all algorithms in configurations
that either include or exclude A2. Note that different configurations only affect Chopt placement
results. Since Chopt mainly focuses on performance related metrics, it provides lower hit ratios
than Belady and Belady-AD. However, comparing with online algorithms LRU and W-TinyLFU,
Chopt still provides higher hit ratios across all workload categories. Though not directly correlated,
higher hit ratio indicates higher endurance on slower memory through mitigating swaps between
layers. Observe that the difference of hit ratios between Belady and Belady-AD are not significant,
which supports our idea to evaluate cost-aware metrics instead of only hit ratios when considering
the A2 assumption.

Running Time. Table 7 also shows the average execution time for each workload category.
Memory workloads take 36 hours on average to calculate Chopt decisions, which is shorter than
for the Storage and CDN categories. We remark that Storage workloads have very high ratios of
unique requests. Chopt is based on solving the MCMF problem, so the execution time depends
on the complexity of constructed network. The complexity is affected by many factors. Larger
trace length increases nodes of the graph, for instance, and having more unique items increases the
number of edges in the graph.

Lessons. There are some common workload related performance patterns we exhibit in our
results. In the examples ofMemory workloads, different algorithms perform differently when cache
size is small, and converge when cache size gets larger. In the Storage and CDN workloads, many of
the examples show a relatively bigger gap between algorithms. As discussed above, this is affected
by many factors like unique requests in workloads. When there are too many unique requests,
meaning that the frequency for each item is relatively low, the optimal placement policy may decide
to bypass most of these requests. However, since the caching performance is highly workload
related, workloads from the same category may also perform differently. For example, in Figure 4,
Storage1 and Storage2 provides different patterns. This illustrates that determining optimal data
placement is non-trivial.
NAAL reflects how placement decisions affect latency, where a small NAAL indicates possible

less unnecessary movement between memory layers. For example, when the cache size is big
enough and all objects are frequent, each request will be swapped into faster memory layer initially
and not evicted, implying that the NAAL will be close to 1. When the cache size is relatively small,
however, caching any of infrequent request may hurt the overall latency so the optimal decision is
to keep all objects in the slower memory layer, where the NAAL is around 5. Yet a big NAAL does
not imply poor caching performance. For example, in Storage2 from Figure 4, NAAL for Chopt is
more than 2.5. This indicates that Chopt decides to bypass many infrequent requests. We discuss
special workload behaviors in next section.

5.4 Spatial sampling accuracy results

Method. To thoroughly evaluate the accuracy of spatial sampling with Chopt, we generate a total
of 4, 080 sampled traces as follows. First, in each category, we either use the original traces as is
(7 CDN traces), or we trim them down (to the initial 10𝑀 and 2𝑀 requests for 15 Memory and 12
Storage

1 traces, respectively). We then generate 30 different sampled traces for each of a variety
of sampling ratios (1%, 5%, 10%, 20%) by varying the random seed used for sampling. Finally, we
run Chopt on all generated traces with varied cache sizes and calculate the NAAL. All in all, we
ran more than 20, 000 separate simulation experiments, including full Chopt without sampling, to
characterize sampling error. We also evaluate if the accuracy results approximate the theoretical
bound as shown in Corollary 4.9.

1We randomly selected 12 out of the available 106 Storage traces due to limited time available to run tests.
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Sampling Ratio

Workload RLE 1% 5% 10% 20%
Avg % 0.20 0.16 0.14 0.03

Memory

Max % 0.90 0.42 0.36 0.24
Avg % 3.67 2.06 1.18 0.50

Storage

Max % 7.25 5.40 4.90 3.77
Avg % 4.08 2.17 1.62 0.93

CDN

Max % 7.95 6.22 5.74 4.74
Table 5. Average and maximum Relative Latency Error (RLE) results for various sampling ratios over all workload

categories. Each value represents the average of multiple experiments with different cache size configurations

varied from very small to large enough to fit all unique items in the trace.
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Fig. 6. Absolute Latency Error (ALE) due to spatial sampling with Chopt. We show detailed results with a

sampling ratio of 1% across selected cache sizes. For each cache size, we plot the theoretical error bound from the

spatial sampling theorem, and a box plot of the distribution of ALE for different traces in each category.

Metrics. We use Relative Latency Error (RLE) to analyze the accuracy of sampled traces. Ac-
cording to our analysis, we evaluate sampled traces with sampling ratio 𝛼 and cache size 𝑠 through
comparing the NAAL with the original trace at cache size of 𝑠 · 1

𝛼
. We also calculate Absolute Hit

Ratio Error (AHRE) as the difference in absolute hit ratios from original workload. This way, we
can compare our sampling accuracy with prior results [59]that also evaluated the spatial sampling
accuracy on the Storage workloads we used in our experiments. Additionally, we use Absolute
Latency Error (ALE) for analyzing our theoretical bounds as shown in Corollary 4.9.

Sampling Accuracy. Table 5 shows the result on RLE for each workload category. The RLE
on Memory workloads is only 0.2% at sampling ratio 0.01. For Storage and CDN workloads, RLE
is larger 3.67% and 4.08% respectively. Table 6 shows the result on hit ratio and AHRE for each
workload category. With the same sampling ratio, the AHRE is similar to RLE for all workload
categories. We compare the AHRE with recent results [59] that claim absolute miss ratio error of
0.01 with sampling ratio of 0.01. Note that the main metric for Chopt is NAAL, so we have to
translate the accuracy with relative errors into a percentage. Given the variety of Storage workloads,
we assume the miss ratio of workloads as 0.2− 0.5, so absolute error at 0.01 represents relative error
of 2% − 5%. In comparison, our sampling accuracy matches prior results by Waldspurger et al. [59].

Figure 6 shows ALE on each workload category for the 1% sampling ratio cases. We have already
discussed how both larger sampling ratios and cache sizes contribute to better accuracy so here
we focus on the edge cases where both sampling ratio and cache size are relatively small. Figure 6
demonstrates that our accuracy is close to the theoretical bounds in Corollary 4.9.

Lessons. As the results show above, spatial sampling is more accurate on Memory workloads
than Storage and CDN traces. This is because those workloads usually have many unique requests
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Sampling Ratio

Workload 1% 5% 10% 20%
Hit Ratio % 92.51 90.43 89.17 87.81Memory

AHRE 0.25 0.24 0.24 0.22
Hit Ratio % 27.95 24.77 23.49 22.31Storage

AHRE 3.83 2.43 1.35 1.18
Hit Ratio % 88.07 80.95 78.54 76.28CDN

AHRE 4.46 1.99 1.89 1.38
Table 6. Hit ratio and Absolute Hit Ratio Error (AHRE) result over all workload categories.

where spatial sampling is limited to patterns in the original trace. We experienced in some cases
that when sampled trace has a relatively small trace length but with many unique requests, the
error on RLE and ALE can be large. To make running time feasible we apply relatively shorter
original traces in our evaluation to curb running time. Comparing with our theoretical error bounds
shown in Corollary 4.9, which is almost 0 when cache size and sampling ratio are relatively big, we
still encounter some errors. In real-world use cases, where we usually apply sampling on very long
traces like our main evaluation on Chopt showed above, unstable patterns caused by sampling can
be avoided.
Finally, as the results shown in Figure 6, errors can still exceed the theoretical bounds which

compute an average case. For example, when cache size is 2𝑀𝐵 for Storageworkloads, the theoretical
expected ALE is only about 0.0001 while experimental results have the expected ALE at around
0.005. We discuss this scenario in Section 6.

6 DISCUSSION

ChoptProvidesOptimal Placement.Chopt simultaneously addresses two fundamental caching
questions: When should an object be cached? and Which cached object should be evicted? Each ques-
tion embeds a notion determining of whether an object will be “hot” in the future. Chopt considers
all objects and the entire time line simultaneously to make optimal decisions, whereas practical
online algorithms tend to view objects independently and instantaneously, and have access only
to the past access history. By comparison, the offline Belady algorithm, colloquially known as
MIN, also looks towards the future but must accept all requests (no cache bypass as per A1) and
ignore read/write cost asymmetry (as per A2). The intermediate variant, Belady-AD, incorporates
a cache bypass policy, allowing Belady to reject cache requests for low utility objects that would
immediately have been evicted. Yet this mechanism is a heuristic in that it implicitly assumes that
all future requested objects will be cached. Chopt takes such considerations while also addressing
A2. The RLI results over Belady-AD indicate that these assumptions are needed for making ideal
placement decisions.

Improving Online Algorithms. The Belady-AD algorithm is clairvoyant with respect to the
reuse distance, a measure equaling stack distance for LRU and that is commonly tracked by online
cache eviction algorithms. The RLI results over Belady-AD and other algorithms suggest that
orthogonal factors to reuse distance, such as request frequency, may be beneficial when evaluating
eviction decisions on a range of workloads. By design, Chopt considers all possibilities for data
placement during its global optimization. The next goal is to produce simple heuristics that capitalize
on patterns at both the local request and the global workload level.
Request Frequency Trends. Many cache algorithms like LFU and TinyLFU use object request

frequency to determine the object locality. LFU performed significantly worse than other algorithms
on our workloads, suggesting that frequency is not a panacea and must instead be considered
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dynamically. To this end, TinyLFU incorporates reuse history through “count decayed frequencies”
that span multiple past intervals. Our analysis suggests that the frequency trends give an improved
proxy for object locality on our workloads, but note that parameters such as interval width (number
of requests per epoch) and number of intervals play a crucial role.
Reuse Distance Distribution. We compared the reuse distance distribution for requests where

Chopt and other algorithms make different decisions. In some workloads, particularly in the
Memory category, Chopt commonly rejects requests at a specific reuse distance that other algo-
rithms accept into the cache, either with or without considering A1. The reuse distance profile may
therefore be a crucial feature for classifying requests under our assumptions. A special case is the
first occurrence of an object which we found Chopt to commonly ignore – a choice in line with
earlier reasoning in the literature [22].

Global Patterns. Considering objects only in isolation overlooks the correlations that are exhibited
in real-world traces. Patterns, such as sequences of frequent (a burst) or infrequent (a scan) requests
for objects within an interval, are commonplace in Storage and CDN workloads. A useful heuristic
is whether the data placement policy can identify a burst or scan globally and help with intelligent
placement decisions. Optimal placement on a scan should bypass every request in the scan (like,
e.g., ARC [45]) instead of polluting the cache with unpopular objects. Bursts within relatively large
object spaces present similar problems as scans, where the cache can be subverted by unnecessary
swaps. For example, if the cache size is 𝑠 and a burst contains 𝑠 + 1 frequently requested objects,
Chopt admits only the most frequent 𝑠 objects. Note that a near-optimal strategy is to cache any 𝑠
objects only, so long as they are all sufficiently popular. Then the performance loss is driven by
accessing one object directly from the slower layers. In contrast, other algorithms might accept all
incoming requests that exhibit high locality of reference, either without considering A1 or even
awareness of a burst. The situation leads to suboptimal decision-making: unnecessary swaps for
some frequent objects between memory layers, which Chopt avoids.
Extending Chopt. Chopt design transforms the data placement problem into a network flow

problem, providing flexibility for more detailed questions. For example, we implementA2 in Chopt
by simply setting different weights on retention links. Other placement problems can be solved by
defining proper configurations for performance, or by removing some links to account for hardware
restrictions. For example, if we set retention links with large weights, to imply that caching any
object amounts to huge latency savings, then Chopt attempts to provide placement results with
minimal bypassing. Further, Chopt supports expanding problems to account for other metrics than
latency. The main limitation of Chopt is the sharing model, where we assume an exclusive caching
model whereby each object can only belong in one layer at a time. Although this assumption
accords with similar work [14], expanding the underlying sharing model is an interesting future
direction.

Spatial Sampling Accuracy.We evaluated the sampling accuracy, both theoretically and em-
pirically. Our derivations showed that spatial sampling retains self-similarity of the original hit
ratio curves with two types of error: distortion at low sampling ratios, and uncertainty for small
cache sizes.
Figure 6 shows cases where the empirical error exceeds the bound on expected error from

Theorem 4.8. We also witnessed that as sampling ratio 𝛼 and cache size 𝑠 increase and the theoretical
error bound 𝑒−𝛼𝑠/8 rapidly converges to zero, empirical errors still occur. This phenomenon was
also encountered by Waldspurger et al. [59] where they defined “sample size” to reflect the 𝛼 · 𝑠
product of the sampling ratio and cache size. We believe better bounds on the higher moments of
the error distribution, or even concentration bounds on the probability of error rather than only on
the average, could shed more light on this phenomenon.
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7 RELATEDWORK

Non-Volatile Memory. NVM technologies are already coming out of the labs to be used in
production, sitting between DRAM and SSD from the performance characteristics point-of-view
(latency, bandwidth, and density) [1, 33]. One of the key characteristics of NVM is being directly
accessible, which enables CPU and DMA controller to access NVM without involving DRAM.
The Linux community and Microsoft have already implemented direct access support on file
systems [57] and there has been work towards representing NVDIMMs as volatile NUMA nodes
transparently [64]. Read and write asymmetry is another characteristic of NVMs that has been
studied to mitigate endurance problems and to improve the write performance [20, 51, 65, 67].
Philipp et al. [49] considered NVM asymmetries through clustering rather than secondary indexes
and used heap organization of block contents to save unnecessary writes from DRAM to NVM. Sala
et al. [54] proposed to perform a single read with a dynamic threshold to adapt to time-varying
channel degradation for resolving NVM endurance problems caused by asymmetries. NVM is also
widely used in building general purpose storage systems [39], storing deep learning models [25],
and graph analysis [43].

Memory Hierarchy. NVM augments the memory hierarchy and may contribute various types
of memory systems, typically with DRAM serving as a filter or a faster layer in the hierarchy
for flexibility of performance trade-offs. Agarwal and Wenisch [3] presented huge-page aware
classification in DRAM-NVM hierarchy for trade-offs between memory cost and performance over-
head. Kannan et al. [36] provided guest-OS awareness during page placement under heterogeneous
memories at compile time, enabling applications to control migrations only for performance-critical
pages. Li et al. [41] estimated the benefit of page migrations between different memory types
by considering access frequency, row buffer locality, and memory-level parallelism. Eisenman
et al. [24] used NVM block devices in a commercial key-value storage system for reducing DRAM
usage and total cost with comparable latency and QPS. Another common multi-level memory
model is the exclusive caching model, which removes data redundancy and save spaces within
cache layers, and problem is transferred to manage data placement and migration between layers
as one. Wong and Wilkes [63] proposed DEMOTE techniques where data blocks can be ejected
to lower level caches and managed by a global MRU. Gill [29] analyzed the insights into optimal
offline performance of multi-level caches and provided an improved technique, named PROMOTE,
considering inner-cache bandwidths and response times which could be problematic in DEMOTE.
Some other works [28, 66] also discussed caching algorithms in exclusive models. While those works
also focus on better cache utilization, they are still bounded with layering restrictions, whereas
Chopt provides optimal placement bounds in a global form. Besides coordinating DRAM and NVM,
researchers also have investigated into other memory hierarchies like using NVM for last level
cache as replacement of SRAM [38], controlling flash write amplification with DRAM [23], and
intelligent placing of packet headers near CPU to reduce tail latency in the LLC-DRAM hierarchy.

Cache Admission Control. New caching techniques have to consider cost-aware data place-
ments under different characteristics in the denser memory hierarchy. Specifically, one must
consider caching more costly objects but also bypassing objects of less value for future latency costs.
Mittal [47] surveyed the power of cache bypass in different heterogeneous systems. Admission
control is a caching technique that employs cache bypassing in practice. Einziger et al. [21, 22] pro-
posed the state-of-the-art cache admission control policy, TinyLFU, to filter out infrequent requests
and replace cached items with old history records, extended asWindow-TinyLFU by adding an
LRU filter to tame sparse bursts. Eisenman et al. [23] implemented admission control through a
Support Vector Machine to classify objects with historical patterns. Recent papers also considered
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cache write-back cost for efficiency and endurance through identifying frequent written-back
blocks and keeping them in LLC via partitioning [50, 60].

Optimal Placement Analysis. Various researchers have conducted theoretical analysis of
optimal offline data placement. Farach-Colton and Liberatore [26] initially proposed to use network
flow formulation for modeling local register allocation problems. Several other authors provide
theoretical approximation and heuristics for optimal placement or general caching problems and also
show that most variants of the optimal placement problem are NP-Hard to compute. Albers et al. [4]
formulated general caching problems as integer linear programming questions, and proposed a
relaxation of optimal placement problems. Bar-Noy et al. [7] proposed general approximation for
resource allocation and scheduling problems with local ratio technique, which can also be applied
to general caching problems. Carlisle and Lloyd [18] provided an algorithm on k-coloring problem

which can be expended on weighted intervals and further solve job scheduling or register allocation
problems. While these works provide insightful heuristics for contemplating caching problems,
they lack practical algorithms or policies for real-world data placement analysis [12].

Offline Optimal Placement Policies. There are many practical works on offline optimal
placement or caching analysis. Belady’s MIN [11] is known as the standard offline optimal caching
algorithm for basic cache assumptions. To the best of our knowledge, Berger et al. [14] and Li
et al. [40] are two state-of-the-art offline optimal placement analysis results, with both papers
focusing on variable object sizes caching problems. Our network flow approach was conceived
independently of prior work [14] that had used it to model offline optimal variable-size cache
eviction. Berger et al. provide a method to calculate offline optimal bounds FOO as well as a
practical approximation for such bounds PFOO for real world storage and CDN workloads through
rounding, rather than sampling as in our approach. Li et al. [40] proposed an offline optimal caching
algorithmOSLwhich statistically predicts object lifetime with histories and assigns leases for cached
objects. Offline optimal placement for variable-size objects are complementary to our problem
with somewhat different assumptions. Both works also characterize the problem using weighted
intervals, where object sizes are respectively represented by weights and the dynamic of placements
depends on whether objects are cached or not. It is unclear how the approach can be generalized to
memory hierarchies where interval weights also would need to characterize placement decisions,
and a successful approach will likely require a direct integer program formulation of the problem.

Practical Data Placement Policies. Alongside TinyLFU [22], several recent papers have de-
signed practical placement policies or algorithms, all of which rely on predicting future cache
behavior based on the history. Beckmann and Sanchez [10] proposed prioritizing object eviction by
their economic value added (EVA), an estimate of the expected number of hits for the object beyond
that of an average object. The idea was then expanded for variable sized objects [8]. Some papers
leverage offline analysis of past accesses by creating variants of Belady’sMIN algorithm. Jain and
Lin [34] predicted object futures by reconstructing Belady’s MIN solutions over a window of past
accesses. Jain and Lin [35] uses a similar idea to provide Demand-MIN for cache prefetching.

Sampling. Sampling techniques have been proven empirically to be efficient for measuring
cache utilities with low overhead. Many recent caching or placement works have deployed spatial
sampling [9, 31, 37, 52, 53, 58, 59] or temporal sampling [17, 62] to improve the efficiency. Spatial
sampling has been cited as a remarkably robust statistic for constructing miss ratio curves to better
reflect the common cache metrics like reuse distances, compared with temporal sampling. Our
work is inspired by Waldspurger et al. [58], and expands on the literature by providing a solid
theoretical foundation under these empirical results.
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8 CONCLUSION

In this paper, we considered the challenge of data placement between adjacent memory hierarchy
layers when we move away from the established assumptions of always needing to bring in data to
faster memory (Cache-Bypass), and that all requests are equally impacted by being served from
slower memory (Performance-Asymmetry). After generalizing the memory model, we found that
miss ratio (or hit ratio) no longer suffices as a proxy for average access latency, and that Belady’s
traditional optimal replacement policy MIN was inadequate. To measure the extent to which new
algorithms need to be designed for this problem space, we presented a clairvoyant algorithm (Chopt)
for optimal offline data placement algorithm and proved that Chopt can correctly provide an upper
bound of performance gain for any data placement algorithm. To make Chopt feasible to run on
large real-world traces, we proved analytically that spatial sampling gives a good approximation –
a result of potential independent interest.
We ran Chopt on a variety of system workload traces, including main memory accesses of

PARSEC benchmarks, block traces from multi-tier storage systems, and web cache traces from a
CDN, and compared it with several cache replacement and data placement policies. Our simulation
results on our offline data placement algorithms show that average latency improvements range
between 8.2% − 44.8% beyond where OPT would have marked a line in the sand. We also evaluated
spatial sampling performance empirically by running over 20, 000 simulations, showing it can
approximate average latency with an average error of only 0.2% at 1% sampling ratio on the PARSEC
benchmarks, and at most 2.17% for the sampling ratio of 5% across three classes of workloads. We
conclude that Chopt can efficiently calculate data placement decisions for diverse workloads on
a two-tier DRAM-NVM memory hierarchy, and opens up a space for improving overall system
performance and latency through new data placement algorithms that are now equipped with a
critical performance yardstick: offline Chopt.
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A APPENDIX: TRACE CHARACTERISTICS
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Fig. 7. Trace characteristics, including reuse distance—the number of unique requests between two neighboring

access of the same object, inter-reference distance—the number of requests between two neighboring access of the

same object, and object popularity throughout the trace.

For Memory workloads, we use PARSEC [16] suite that include a variety of benchmarks with
different execution characteristics and memory access patterns. We collected all the memory traces
of 14 PARSEC benchmarks and a parallel breadth-first search algorithm for multicore single-node
systems on the Graph500 [48] benchmark at page level using a Pin [42]-based profiler we developed.
Our profiler leverages binary instrumentation to capture all the memory operations a specified
program makes. The profiler emulates the CPU-level cache internally to filter out the cache-lines
which could be cached on the CPU caches so the resulted trace would represent the operations that
only end up accessing the main memory. For Storage workloads, we use 106 week-long disk access
traces in production storage systems [59]. For CDN workloads, we use a cache trace from a major
content distribution network that consists of week-long end-user requests for video-on-demand,
streaming video, downloads, and e-commerce contents. Table 7 shows basic characteristics of our
traces, and Figure 7 provides some characteristics of the workloads we used in our evaluation. The
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Memory Storage CDN

Number of Traces 15 106 7
Length (×106) 40–2120 3.2–2115 10
Sampled Length (×106) ≈ 10 ≈ 1 ≈ 10
Sampling Ratio (%) 0.5–25 0.05–20 100
Running Time (hours) ≈ 36 ≈ 24 ≈ 48
Unique Items (×103) ≈ 9.4 ≈ 200 ≈ 245

Table 7. Basic characteristics for Memory, Storage, and CDN workload categories. Length represents the number

of requests; Sampled and Sampling ratio correspond to spatial sampling; Running time represents the execution
time for running Chopt to calculate offline placement policies on sampled (Memory and Storage) and original

(CDN) workloads); Unique items represents the number of unique requests in the workloads.

characteristics include the cumulative distribution of reuse distance of accesses throughout each
trace, the inter-reference distance between accesses, and the popularity of 𝑖th most popular item as
a function of 𝑖 . The trace names match those we showed in Figure 4.

For Memory and Storage traces, we use variable sampling ratios to unify sampled trace lengths,
at around 10𝑀 and 1𝑀 correspondingly for the two types. For CDN traces, since the original trace
length is only around 70𝑀 , we split the trace into 7 sub-traces, each containing about 10𝑀 requests.
Traces in each workload type contain different number of unique requests. Typically, Memory

traces have far fewer unique requests than the other two workload types, since Storage and CDN

workloads usually contain behaviors like scans, when a sequence of many low frequency requests
occur, and bursts, when a small group of high frequency requests occur.

Despite many other related works [14, 40] focusing on variable object size caching, we only focus
on memory hierarchy and assume a unit object size for each workload type. For Memory traces, we
assume each object is 4KB as the page size. For Storage traces, we assume 64KB as the block cache
size. For CDN traces, we assume 64MB since the contents are mostly video based which indicates
relatively larger object size than normal requests. Since we apply sampling on original traces, the
cache sizes shown in our results are inversely amplified as numbers on non-sampled traces.

B APPENDIX: PROOFS

Lemma B.1. Each feasible minimum-cost flow in 𝐺 is a cache schedule.

Proof of Lemma B.1. For a given time point 0 ≤ 𝑡 ≤ 𝑇 , let 𝑆𝑡 denote {𝑠, 𝑥1, . . . , 𝑥𝑡 , ℎ̂1, . . . , ℎ̂𝑡 }.
The total flow across edges in the cut (𝑆𝑡 ,𝑉 − 𝑆𝑡 ) cannot exceed the maximum flow of the graph,
which is upper bounded at 𝑁 by the choke point (𝑠, 𝑥1). The retention links 𝑒1, . . . , 𝑒𝑘 with positive
flow across the cut has capacity of 1, and thus a flow of 1. By construction, the retention edges all
have different source nodes ℎ̂𝑖1 , . . . , ℎ̂𝑖𝑘 where 𝑖 𝑗 ∈ {1, 2, . . . , 𝑡} for 1 ≤ 𝑗 ≤ 𝑘 . The set of items in
cache after the request at time 𝑡 is correspondingly 𝐶𝑡 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑘 }.

At most a single retention link terminates at ℎ̂𝑡 , whose flow (if any) can either continue through
an eviction link (ℎ̂𝑡 , 𝑥𝑡 ) or another retention link for item 𝑥𝑡 . In the former case, there was an eviction
of item 𝑥𝑡 at time 𝑡 , or 𝑥𝑡 ∈ 𝐶𝑡 −𝐶𝑡+1. At most a single caching link can be traversed from 𝑥𝑡+1 to
ℎ̂𝑡+1, and positive flow across this arc means that 𝑥𝑡+1 ∈ 𝐶𝑡+1 −𝐶𝑡 , or that item 𝑥𝑡+1 was brought
into cache at time 𝑡 + 1. Because the caching link and eviction link at a given time 𝑡 both have
capacity of 1 and positive costs, a minimum-cost flow would not simultaneously carry positive
flow over both arcs: simply removing the flow over both links retains feasibility (per-node flow is
conserved) and yet reduces cost, thus producing a cheaper feasible flow than the minimum-cost
one – a contradiction. Thus no other flow across the cuts impact the sets 𝐶𝑡 or 𝐶𝑡+1, implying they
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differ by at most one element (either one due to eviction or one from an item being brought into
cache) or |𝐶𝑡Δ𝐶𝑡+1 | ≤ 1 for all 𝑡 . The sequence 𝐶0, . . . ,𝐶𝑇 is thus a valid cache schedule. □

Lemma B.2. Each cache replacement policy can be expressed in terms of feasible flow in network𝐺 .

Proof of Lemma B.2. Let P denote a cache policy, and let 𝐶0, . . . ,𝐶𝑇 denote the cache schedule
for P for the given workload (𝑥𝑡 )𝑇𝑡=1. Let 𝑦𝑡 ∈ 𝐶𝑡 denote the (at most one) item 𝑥𝑡 that P brought
into cache at time 𝑡 , specifically 𝑦𝑡 ∈ 𝐶𝑡 −𝐶𝑡−1, and let 𝑦𝑡 = ⊥ if item 𝑥𝑡 was already in the cache at
time 𝑡 (cache hit). Set 𝐶0 = ∅. Similarly, let 𝑧𝑡 ∈ 𝐶𝑡−1 denote the (at most one) item evicted at time
step 𝑡 , setting 𝑧𝑡 = ⊥ if no item is evicted.
Define the flow 𝑓𝑒 over 𝐺 as follows. For high lane links 𝑒 = (ℎ̂𝑡 , ℎ̂′

𝑡 ) with any pair 𝑡 < 𝑡 ′, let
𝑓𝑒 = 1 if 𝑥𝑡 ∈ 𝐶𝑡 and 𝑥𝑡 ≠ 𝑧𝑡 , otherwise 𝑓𝑒 = 0. For caching links 𝑒 = (𝑥𝑡 , ℎ̂𝑡 ), set 𝑓𝑒 = 1 if 𝑥𝑡 = 𝑦𝑡 ,
and 0 otherwise. For eviction links 𝑒 = (ℎ̂𝑡 , 𝑥𝑡 ), set 𝑓𝑒 = 1 if 𝑥𝑡 = 𝑧𝑡 , and 0 otherwise. For timeline

links 𝑒 = (𝑥𝑡 , 𝑥𝑡+1), set 𝑓𝑒 = 𝑁 − |𝐶𝑡 |. Also set 𝑓(𝑠,𝑥1) = 𝑁 . All flows are therefore integral and no
capacity constraints are exceeded.

We next show flow is conserved at every node. On one hand, the inbound flow to each high lane

node ℎ̂𝑡 is at most 1 (from either a caching link or an incoming retention edge) and flows out (from
either another retention edge or an eviction link, respectively). On the other hand, the flow into
node 𝑥𝑡 equals 𝑓(𝑥𝑡−1,𝑥𝑡 ) + 𝑓(ℎ̂𝑡 ,𝑥𝑡 ) = 𝑁 − |𝐶𝑡−1 | + 1[𝑥𝑡 = 𝑧𝑡 ]. This value in turn equals the outgoing
flow

𝑓(𝑥𝑡 ,𝑥𝑡+1) + 𝑓(𝑥𝑡 ,ℎ̂𝑡 ) = 𝑁 − |𝐶𝑡 | + 1[𝑥𝑡 = 𝑦𝑡 ]
because𝐶𝑡Δ𝐶𝑡−1 ⊂ {𝑦𝑡 , 𝑧𝑡 } and either 𝑦𝑡 = ⊥ or 𝑧𝑡 = ⊥, where we assume ⊥ ∉ 𝐴 for any set 𝐴. □

Lemma B.3. (Chernoff bound) Let𝑋1, . . . 𝑋𝑛 be independent random indicator variables with P[𝑋𝑖 =

1] = 𝑝 for 𝑖 ∈ [𝑛]. Set 𝑋 =
∑

𝑖∈[𝑛] 𝑋𝑖 and ` = 𝑛𝑝 . Then,

P[𝑋 ≥ (1 + 𝛿)`] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)`
≤ 𝑒−

min{𝛿2,𝛿 }`
4 , and

P[𝑋 ≤ (1 − 𝛿)`] ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)`
≤ 𝑒−

min{𝛿2,𝛿 }`
4

with the former for 𝛿 ≥ 0 and the latter restricted to 𝛿 ∈ (0, 1].

Proof of Theorem 4.8. First assume without loss of generality that𝑤𝑡 = 𝑤 for all 𝑡 ∈ [𝑇 ]. Then����E [ 1𝛼 �̂�(𝛼𝑠) −𝑚(𝑠)
] ����

=

������ ∑𝑡 ∈[𝑇 ]
E
[𝑤𝑡

𝛼
1[𝑟𝑡 ≥ 𝛼𝑠]1[𝑌𝑡 = 1] −𝑤𝑡1[𝑟𝑡 ≥ 𝑠]

] ������
=

������ ∑𝑡 ∈[𝑇 ]

𝑤

𝛼
P [𝑟𝑡 ≥ 𝛼𝑠] P[𝑌𝑡 = 1] −𝑤1[𝑟𝑡 ≥ 𝑠]

������
=

������𝑤 ∑
𝑡 ∈[𝑇 ]

P [𝑟𝑡 ≥ 𝛼𝑠] − 1[𝑟𝑡 ≥ 𝑠]

������
=

������𝑤 ∑
𝑡 ∈[𝑇 ]

P [𝑟𝑡 ≥ 𝛼𝑠] 1[𝑟𝑡 < 𝑠] − P [𝑟𝑡 < 𝛼𝑠] 1[𝑟𝑡 ≥ 𝑠]

������
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≤𝑤
∑
𝑡 ∈[𝑇 ]

|P [𝑟𝑡 ≥ 𝛼𝑠] 1[𝑟𝑡 < 𝑠] | + |P [𝑟𝑡 < 𝛼𝑠] 1[𝑟𝑡 ≥ 𝑠] |

≤𝑤
∑
𝑡 ∈[𝑇 ]

exp
(
−min{𝛿2, 𝛿}𝛼𝑟𝑡

4

)
=𝑤

∑
𝑡 :𝑟𝑡< 𝑠

2

exp
(
−𝛼 (𝑠 − 𝑟𝑡 )

4

)
+𝑤

∑
𝑡 :𝑟𝑡 ≥ 𝑠

2

exp
(
−𝛼 (𝑠 − 𝑟𝑡 )2

4𝑟𝑡

)
≤𝑤

∑
𝑡 :𝑟𝑡< 𝑠

2

exp
(
−𝛼𝑠

8

)
+𝑤

∑
𝑡 :𝑟𝑡 ≥ 𝑠

2

exp
(
−𝛼𝑠

8

)
= 𝑇𝑤 exp

(
−𝛼𝑠

8

)
for 𝛿 =

��� 𝑠𝑟𝑡 − 1
���, where the first equality is justified by the linearity of expectation, the second by the

independence of 𝑟𝑡 and 𝑌𝑡 , the fourth by P[𝐴] = 1 − P[𝐴] for any event 𝐴, the first inequality by
the triangle inequality, the second inequality combines the upper and lower-tail Chernoff bounds
(B.3) using 𝑟𝑡 , recognizing that only either one of the two terms in the sum is non-zero for each
𝑡 ∈ [𝑇 ], and the third one from that 𝛿2 ≤ |𝛿 | when 0 ≤ 𝑠 ≤ 2𝑟𝑡 .

When the weights 𝑎 ≠ 𝑏 differ, we apply the bound separately for the subsequences 𝑇𝑎 = {𝑡 ∈
[𝑇 ] : 𝑤𝑡 = 𝑎} and 𝑇𝑏 = 𝑇 −𝑇𝑎 , obtaining an upper bound of

|𝑇𝑎 |𝑎 exp
(
−𝛼𝑠

8

)
+ |𝑇𝑏 |𝑏 exp

(
−𝛼𝑠

8

)
= 𝑇 (b𝑎 + (1 − b)𝑏) exp

(
−𝛼𝑠

8

)
where b = |𝑇𝑎 |/𝑇 . □
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