Don’t Get Kicked: Predict if a Car Purchased at Auction is Lemon

Reza Karimi, Zelalem Gero
Emory University

(CS526: Machine Learning Project Report
Spring 2017

Abstract

One of the biggest challenges of an auto dealership
purchasing a used car at an auto auction is the risk that
the vehicle might have serious issues that prevent it
from being sold to customers. The auto community
calls these unfortunate purchases "kicks". Kick cars can
be very costly to dealers after transportation cost,
throw-away repair work, and market losses in reselling
the vehicle. The goal of this project is to predict if the
car purchased at the Auction is a Kick (bad buy). So,
this is a binary classification problem. We preprocessed
the data, expanded the feature space and develop
models, then compared against each other. The best
performing classifier was RandomForest achieving
0.916990 of accuracy and 0.882512 of AUC.

1. Problem Overview

Buying and selling used cars is a common practice all
around the world. Purchasing a used vehicle has
advantages like lower price than a comparable new car,
lower continuing ownership expenses such as collision
insurance and taxes, and mostly a used vehicle has
already taken its biggest depreciation hit. In general,
buying used is a way to get a nicer car than you would
be able to afford buying a new one. While this market
can be very profitable for buyers of used cars since they
are often sold for below retail prices, there is the large
risk that buyers face in purchasing a faulty vehicle.
Commonly referred to as “kicks”, these purchases can
severely hurt the finances of a car dealership business,
as the money spent on them ultimately becomes a
wasted cost. Seemingly functional used cars that end up
having no utility value, “lemons”, pose a significant
risk to auto dealerships because they may be very
difficult to detect at an auction.

Kicked cars often result when there are tampered
odometers, mechanical issues the dealer is not able to
address, or some other unforeseen problem. Kick cars
can be very costly to dealers after transportation cost,

throw-away repair work, and market losses in reselling
the vehicle. Given the high stakes involved for auto
dealerships, they have to ensure every car they purchase
at an auction is not a lemon and will be sold to a
customer. It would be extremely useful to find a better
way to predict whether a car is a lemon or not at time of
the auction. Greater predictability will reduce the
likelihood of bad, costly purchases.

Hence, the goal of this project is to predict if a car
purchased at an Auction is a lemon (bad buy). So, this
is a binary classification problem. We develop
predictive models that can predict beforehand whether a
given vehicle in an auction is good buy or not so that
the buyers can avoid the bad ones. The target variable is
“isBadBuy”, expressed by a probability of being a
lemon. This problem particularly needs to be wary of
the high cost of a false negative, falsely predicting that
a lemon has a higher probability of being a good buy.
This would result in a dealership buying the car
thinking it would be sellable, incurring
transportation/repair costs, and then realizing it is left
with a defective car and unsellable inventory. There is
also an opportunity cost associated with a false positive,
in this case falsely predicting that a good car has a
higher likelihood of being a lemon. In this case the
dealership would refrain from purchasing a car that
would have otherwise generated profit for the company
after being successfully sold to a customer.

2. Data Description

The dataset we used was downloaded from kaggle.com
[1] provided by Carvana [2]. The training set contains
72,983 instances, with 32 independent variables and a
dependent variable. Another dataset of 48,000 instances
is also set aside for test. However, the test set does not
have the target class labels and cannot be used to
measure the performance of our models locally.
Therefore, we split the training set further into train and
holdout sets to measure our performance. But, the
original test set was used to submit our best performing

model to the competition.

The dataset has features that are categorical, numeric
and date type. Each record has a unique ReflD
assigned as an identifier. A feature of date type called
“purchDate” describes the actual date, month and year
the vehicle is purchased. “VehYear” is a related feature
that describes the year the vehicle is made. From the
above two features, we get “VehicleAge” which is
totally an extension of the previous two. We will talk
more about this later. A categorical attribute “Auction”
describes the auction names where the car was
purchased.

The features ‘“Make”, “Model”, “Trim” and
“SubModel” represent the vehicle’s brand
characteristics. We also have more categorical features
like “Color”, “Transmission”, “Nationality”,
“Size”,“WheelType”, “WheelTypelD”. The last two are
dependent on each other and taken care of while
preprocessing. While “VehOdo” describes the odometer
reading of the car, “TopThreeAmerican” is whether the
vehicle is from one of the top three American
manufacturers.

Another closely related set of features describe the
different types of costs associated with each vehicle.

MMR AcquisitionAuctionAveragePrice,
MMR AcquisitionAuctionCleanPrice,
MMR AcquisitionRetail AveragePrice,,

MMR AcquisitonRetailCleanPrice,
MMR CurrentAuctionAveragePrice,
MMRCurrentAuctionCleanPrice,
MMRCurrentRetail AveragePrice

MMRCurrentRetailCleanPrice.

"Acquisition" means the price of the vehicle MMR at
which it was sold at auction. "Clean" refers to the price
of the vehicle in good condition. These vehicles are
usually more expensive than the ones with “Average”.

"Auction" refers to the expected price of the vehicle at
the auction

"Retail" refers to the expected price of the vehicle to
which the customer is willing to pay at the dealership.

“VNST” describes Zip code while “VNZIP1” tells the
state where the vehicle is purchased. Therefore this two
are highly correlated.

In the case of feature AUCGUART, PRIMEUNIT these
are related because

“PRIMEUNIT” describes the level of demand with
respect to a standard purchase “AUCGUART”
describes the risk that can be run with the vehicle,
meaning how much guarantee the seller is willing to
give.

Finally, we have “BYRNO”, which is a code
assigned to the purchaser of the vehicle. “VehCost” is
the price of the vehicle. “IsOnlineSale” is whether the
sale was done online. And “WarrantyCost” is the price
of the warranty.

3. Preprocessing

In this section we perform data visualization and
exploration to better understand our dataset.

3.1 Univariate analysis

The first thing we did is a univariate analysis of each
feature to see the distribution.

Vehicle age in years

15000

10000

Frequency

5000

o_
~ 4
~
& -
»

Fig 1. Distribution of vehicle age

Histogram for the odomoter values

Frequency
2000 4000 6000 8000

0
L

r T T T T T 1
0 20000 40000 60000 80000 100000 120000

Odometer value

Fig 2. Distribution of odometer readings

As we can see from figl and fig2, some features have
a Gaussian like distributions. Such features include
VehAge, VehOdo, Vehyear and Nationality. Some
other have a skewed distribution as shown in fig3 and
figd. All the MMR features behave similar to the

acquisition cost.

Histogram of the warranty costs

15000 25000
1 I

Frequency

5000
1

0
L

I T T 1
0 2000 4000 6000

Warranty cost

Fig3. Distribution of warranty cost

Histogram of the vehicle accquisiton costs

Frequency
15000 25000
1 |

5000

0
L

T T T T 1
0 10000 20000 30000 40000

Acquisiton cost

Fig4. Distribution of acquisition cost

The remaining features do not exhibit any interesting
distribution.

3.2 Bivariate Analysis

& Scatter Plot
o
S 4
S o
o}
8 3 0 °
o S 7 OO [e}
% ™ o
o
o
: g
= (=]
S N
o
4
R
= o
57
o
T T I T T
0 10000 20000 30000 40000

Current Retail Clean Price

Fig5. Scatter CRCP vs CRAP

Next we try to identify features that are highly
correlated using bivariate analysis of features. We used
scatter plots to see any potential correlation. We can see
from fig 5 and fig 6 that the MMR cost features are
linearly correlated and we should be careful about this
when we use linear models.

Scatter Plot

30000 40000
1 1
o

Acquisition Auction Average Price
20000
1

co'tm
T T T
10000 20000 30000

[0}
L

10000
1
© O OO

Acquisition Auction Clean Price

Fig6. Scatter AAAP vs AACP

3.3 Missing value imputation

Most of the features in the dataset contain missing
values. Two especially problematic features
(“PRIMEUNIT”, “AUCGUARD”) are observed with
missing values of 96% and 98%. Except for this two
features, we performed mean value imputation for all
numerical features and frequent occurring value for
categorical features. This worked well as there were no
features with much missing data except for the

aforementioned 2 features.
3.4 Feature Engineering

Based on the above data exploration, we performed
feature elimination and transformation tasks. We
dropped the two features with almost all missing value
(“PRIMEUNIT”, “AUCGUARD”). “Refld” is also
dropped as it is just a unique number with no relation to
prediction. “VehYear” which tells the year a vehicle is
made is dropped because we have “VehicleAge” which
captures the same information. The same scenario
happens with “WheelTypeld” and “WheelType”,
therefore we keep just “WheelTypeID”. The features
“VNZIP1” and “VNST” both describe the location of
the auction where the car is bout, so we kept just
“VNST” this tells us a state instead of a very specific
ZIP.

Next, we created new features extracted from
existing ones. The features “Model” and “SubModel”
have a lot of excellent properties that can be used to
differentiate car types even within same models.
Therefore, we created new features based on the
number of cylinders, types of injection the vehicle uses,
the driving system of the vehicle, number of injectors,
body type, and engine properties in general. This has
given us 20 more features.

We have also split the purchase date (“purchDate”)
into three separate features based on date, month and
year. We also did transformation to the MMR price
features to make the market price of a car a relative
descriptor not an absolute one as the price of different
cars is inherently different. So we used the vehicle age
and warranty cost to transform the cost features into
relative terms so that comparisons can be easily made.
We have done this to the odometer reading as well.
These gave as another dozen features to add on our
original set. Finally, we dummy coded the categorical
features.

3.5 Data Transformation

We performed Standardizing the features so that they
are centered around O with a standard deviation of 1 so
that comparing measurements that have different units
won’t be biased.

Normalization is also used to get smaller standard
deviations, which can suppress the effect of outliers.

3.6 Imbalanced Class Handling

Our dataset was 88% negative, 12% positive class.
With such huge class imbalance, any naive classifier
who guesses everything to be negative would be 88%
accurate. Therefore, we used SMOTE oversampling
technique with 40% for the positive class and increased
our overall dataset to 96,013.

3.7 Feature Selection

Now that we have more features, we need to find out if
there are features that are not important. We trained a
decision tree based on all all features and evaluated the
importance of each feature based on Gini impurity.
Turns out that all the features are important for the
classification and we didn’t eliminate any feature.

4. Modeling and Evaluation

Our problem definition and preliminary data analysis
showed that using generalization error alone as a
performance metric could be misleading since we have
a bigger portion of data from the negative class. So, in
the context of our problem, it is more reasonable to
evaluate the performance based on accuracy and one of
fl or f2 scores. between f1 and f2 we have chosen the
f2 because in this kind of detection problems having
less false negatives is more desirable.

we also got help from AUC as a good indicator of
one classifier’s ability for correct prediction over
another to get a sense of precision and recall of the
model.

4.1 Selected Models

We tried a large set of classifiers including Logistic
Regression, NaiveBayes, LDA, QDA, Decision Tree,
AdaBoost, GradientBoosting, XGBoost,
RandomForest, KNN, MLP and SVM which among
them we took out the linear ones: Logistic Regression,
NaiveBayes, LDA and also QDA due to their poor
performance on the dataset.

4.2 Building Models

We built models using the primary feature set. Four
best performing models were RandomForest, MLP,
XGBoost and GradientBoosting.

Model

Random MLP XGBoost GDBoost

Forest
Accuracy

0.889178 0.868104 0.849355 0.847689
Recall

0.742839 0.669721 0.624309 0.625872
F2

0.770877 0.669721 0.664081 0.664594
ROC AUC

0.852593 0.818508 0.793094 0.792235

After expanding the feature space we trained our
classifiers again, performing better than before. The
best three models were RandomForest, XGBoost and
GradientBoosting.

Next step we Ensembled RandomForest, XGBoost and
KNN models, calculated weights using cross validation.
then we got slightly better results than the best
performing one which was RandomForest.

Model
Random XGBoost GDB Ensemble
Forest
Accuracy 0.916990 0.916331 0.913935 0.918934
Recall 0.779085 0.776273 0.913935 0.796687
F2 0.810330 0.808018 0.805857 0.814386
AUC 0.881314 0.879179 0.8850644
0.882512

In all the above experiments, we used cross validation
for feature selection and parameter tuning wherever
appropriate.

4.3 Comparison to the Competition Winner

After training our model with all the training data we
had from kaggle, we used the competition test set which
has 48,000 records with no class labels. We tried
submitting two different types of models to see how
much there is an improvement. First step which we
built models using the primary feature set got score

0.11654, After building models using the extended
feature set, our Ensemble model got score 0.24245.

Kaggle uses Gini coefficient [3] to rank the submitted
solutions. It is calculated by 2*AUC-1.The first place
winner has score 0.26720.

5. Conclusion

In this project we dealt with a huge amount of work on
data preprocessing. Addressing missing values and
having class imbalance were the first issues with data.
we also normalized and scaled data in the preprocessing
phase. So after training a set of Cclassifiers
RandomForest, MLP, XGBoost and GradientBoosting
were the best performing models among all. After that
we expanded our feature space using dummy coding
categorical features and making combinations of
primary numerical features. Which gave us a great
boost in performance, having RandomForest, XGBoost,
GradientBoost as the best performing models. Next step
we made an ensemble of RandomForest, XGBoost and
KNN resulting a better performance than the best single
model, demonstrating 0.918934 of accuracy and
0.8850644 of AUC.

6. References

[1] https://www.kaggle.com/c/DontGetKicked
[2] https://en.wikipedia.org/wiki/Carvana

[3] https://en.wikipedia.org/wiki/Gini_coefficient

